翻訳と辞書
Words near each other
・ Quaestor (disambiguation)
・ Quaestor (European Parliament)
・ Quaestor (University of St Andrews)
・ Quaestor hocicudo
・ Quaestor sacri palatii
・ Quaestura exercitus
・ Quadrennial comprehensive policy review
・ Quadrennial Defense Review
・ Quadrennial Diplomacy and Development Review
・ Quadrennial Fire Review
・ Quadrennium
・ Quadri
・ Quadri Aruna
・ Quadria Capital
・ Quadric
Quadric (projective geometry)
・ Quadric geometric algebra
・ Quadricentennial Pavilion
・ Quadriceps femoris muscle
・ Quadriceps tendon
・ Quadriceps tendon rupture
・ Quadrichrome vitiligo
・ Quadricoccus
・ Quadricoccus australiensis
・ Quadrics
・ QuadricsRms
・ Quadricuspid aortic valve
・ Quadricyclane
・ Quadricycle
・ Quadrifid Island


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Quadric (projective geometry) : ウィキペディア英語版
Quadric (projective geometry)

In projective geometry, a quadric is the set of points of a projective space where a certain quadratic form on the homogeneous coordinates becomes zero. We shall restrict ourself to the case of ''finite-dimensional projective spaces''.
==Quadratic forms==

Let K be a field and \mathcal V(K) a vector space over K. A mapping \rho from \mathcal V(K) to K such that

: (Q1) \rho(\lambda\vec x)=\lambda^2\rho(\vec x ) for any \lambda\in K and \vec x \in \mathcal V(K).
: (Q2) f(\vec x,\vec y ):=\rho(\vec x+\vec y)-\rho(\vec x)-\rho(\vec y) is a bilinear form.
is called quadratic form. The bilinear form f is symmetric''.''
In case of \operatornameK\ne2 we have f(\vec x,\vec x)=2\rho(\vec x), i.e. f and \rho are mutually determined in a unique way.

In case of \operatornameK=2 we have always f(\vec x,\vec x)=0, i.e. f is
''symplectic''.
For \mathcal V(K)=K^n and \vec x=\sum_^x_i\vec e_i
(\ is a base of \mathcal V(K)) \rho has the form
:
\rho(\vec x)=\sum_^ a_x_ix_k\texta_:= f(\vec e_i,\vec e_k)\texti\ne k\texta_:= \rho(\vec e_i)\texti=k and
: f(\vec x,\vec y)=\sum_^ a_(x_iy_k+x_ky_i).
For example:
: n=3,\ \rho(\vec x)=x_1x_2-x^2_3, \ f(\vec x,\vec y)=x_1y_2+x_2y_1-2x_3y_3.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quadric (projective geometry)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.